-) TEXAS TECH UNIVERSITY

Eﬁ HEALTH SCIENCES CENTER..
. ELPASO

TTUHSC El Paso

Programming Languages
Coding Standards
Best Practices

Version 1.2
6/10/2021

Prepared for:

Texas Tech University
Health Sciences Center
El Paso

= TEXAS TECH UNIVERSITY TTUHSC

P) \
I E{[%}[\J?g SCIENCES CENTER. E ok Sthcarts

Document Revision History

Document Revised . Section, Page(s)

Version Date Modified By and Text Revised Comments

1.0 4/20/2016 Adrian Cazares | All the document Initial version

1.1 4/21/2021 Ivan Calderon Accessibility Added Accessibility
Guidelines Section 3 Guidelines (WCAG)

1.2 06/10/2021 | Edgar Sosa Secure Website Added Security Website,

formatted file.
Version 1.2 2 6/10/2021

Texas Tech University Health Sciences Center. All rights reserved.

=~ TEXAS TECH UNIVERSITY TTUHSC

: I E{l%k'gg SCIENCES CENTER. E ok Sthcarts

Table of Contents

R [LA oY LU (o o I PP PUPRPPRRPRR 5
1.1 [T 00 1SS PPTUPPPPTPTTNN 5
1.2 Yoo o PSP TP PTP PP 5

2 Technologies and ArCHITECTUIEii e 5
2.1 Programming Languages and project SPeCifiCatioNS...........ocuviieiiiiiie i 5
2.2 F N o] o [T0F= 1A [0 3 AN (o3 a1 = od (1 = PP PPPPNS 5

3 ACCESIDIITY GUIARIINES .. nan 7
3.1 ACCESSIDIlIY GUIAEINESoeeeieeeeieieeeee ettt eeeeeeeaeaasaessasasasasesesesssssesesnsssssnnnnnnnnes 7

T o To 1= 10010111 ¢ [P O PP PP OPPPRPP 7
4.1 NAMESPACES ...ttt s 7
4.2 ClaSSES & SITUCIUIESviiiiiiieeie ettt e s e e e s e e e s e e e e e e e e e aanns 8
4.3 1] (=] £ F= ol =2 TP P PP PP PPPPPPPOPPPPN 8
4.4 1070 0151 1= 0 £ PP PP 9
4.5 = 01U L= =i o] O PP P PP PPN 9
4.6 Variables, Fields & PArametersccviiiiiiiiiiiiiie ettt 10
4.7 0] 1T 1= J PO PRT 10
4.8 IMIEENOAS ...ttt e e s e e e 11
4.9 EVENT HANGIEIS ..ttt e ettt e s et e e e abe e e e e nbeas 11
4,10 Error HANAlNG ... 11

D RO MIAL NG e e ——— 14
51 L = TS 0= 10 | 14
5.2 [T [To= 11T To RS o o] o = 0PSRNt 14
5.3 INAENEALION & BIACESeiiiiiiiiii ittt et e sttt e bbbt e e s sabb e e s aanneee s 15
54 RV T C SIS o = o PSPPIt 16
55 LONG NES OFf COUR ..ottt e e e e e e e e 16

IO] 10700 7=T 01 A Yo [P PSPPI 17
6.1 INEIlISENSE COMIMEINES ..oiiiiiiiiie ittt ettt et b e e s bttt e e s bbe e e e s nnteeeesnnneeeens 17
6.2 ENd-OF-LiNE COMMIENTSoiiiiiiiieiiiiie ettt ettt e s st e s e s e e e e b e e e e e nnnnes 17
6.3 SIiNGIE LINE COMIMENES.....eiiiiiiiiie ettt ettt e e s st et e e e st be e e e e anbe e e e e anbee e e e anbbeeeenneees 17
6.4 /] TODO: COMMENTSeeeieiitteee ettt ettt et e st e e sttt e s bt e e sk bt e e s b e et e s sne e e e s bne e e e s annne e e s nanneeens 17

Version 1.2 3 6/10/2021

Texas Tech University Health Sciences Center. All rights reserved.

=~ TEXAS TECH UNIVERSITY TTUHSC

: I E{l%k'gg SCIENCES CENTER. E ok Sthcarts

6.5 C-SYIE COMIMEBNTS....eei e iitete ettt e et e et e oo ek bt e e e ea b et e e e aab et e e e ek be e e e e anbe e e e e anbr e e e e anbeeeeannnns 17

FA 0% 1o 1 =11 4= {01 ¢ PO OO PRSP OPPPPTP 18
7.1 102: To] 1 t=1 2= 1 110 o HEU PO P PP P PP OU PP 18

8 CH GOIAEN RUIES ...ttt s e st e s s e e s E et e se e e sn e e nnn e e s re e e nnneenn 19
9 Dat@DASE STANUAITS ...ccoiiiiiieiitie ettt e e et e e e e st e e e abe e e e e an b e e e e e anbe e e e e nneas 20
9.1 General Rules for all database ODJECES..........ccueiiiiiiii e 20
9.2 L= 11 PSP PP PP 20
9.3 1070] 1111 01 0 E S PO P TP PP OPPPRP 20
9.4 VIBWS ittt ettt et e oot e et e oo e e e e e a R et e n Rt e e n R e e e e e e e s 21
9.5 (0] (=To l o (o Tot=To [] £ T OO TP PP OPPPTP 21
9.6 FUNCHIONS ..ttt ettt e et e s e e e e e e e e e et e s e s e e e e e e e e e e nnns 21
9.7 V2= L= L] [R PRRR 21
9.8 (9] 23 @0 [T o @Ko 01V o110 £ 22
10 SECUIE WBDSITE ...ttt s e e st e e s s et e s s e e e n e e s 25
10.1 Authentication and AUTNENTICALIONc.eiiiiiiiie e e 25
10.1.1 Install DotNetCasClient USING NUGEL.......c.ccvecieiiiieeeceeeeeeee et 25
10.1.2 FOrmsS AULNENTICALIONc.couiiiiiiirierieieteee ettt neen 25
10.1.3 Using Authorize and AllowANoNymMouUs AttribULES.........ccceveceeveveeceseeee e 26
10.1.4 Role base authentiCALIONcccoeirieirieireicee et 27

10.2 Cross-Site Request FOrgery (CSRE)uiii it 28
10.3 CroSS Site SCHPUNG (XSS) ..uuiiiiiiiiiiiiiiiiiiieeeteeeteeeeeeeeeeeeeteeeeataeeseeereteeteesarerarerrrererrrerrrarerererrrr. 30
10.3.1 Regular Expression Attribute and object model...........cccoeveeeveieecececeee e, 30
10.3.2 URL ENCOUING ..eouviiieieitieiese sttt ettt ste st teseeesaesaessa e tesnaessestessaensessnensesseeneas 30
10.3.3 SQL INJECHON ..ottt sttt e e et e s seenaesteesaesesseensesseeneas 31
10.3.4 SECUINE COOKIES ..ottt ettt e e st e et e st e e ebt e e sbe e e satessatesssntessabesesnes 32
10.4 Custom Error Page for Error HandliNgcooceeeiiiiiiiiiii e 34
Version 1.2 4 6/10/2021

Texas Tech University Health Sciences Center. All rights reserved.

=~ TEXAS TECH UNIVERSITY TTUHSC
ar HEALTH SCIENCES CENTER .

EL PASO Coding Standards

1 Introduction

1.1 Purpose

The purpose of this document is to provide coding style standards for the development of source code
written in C#. Adhering to a coding style standard is an industry proven best-practice for making team
development more efficient and application maintenance more cost-effective. While not comprehensive,
these guidelines represent the minimum level of standardization expected in the source code of projects
within TTUHSC EI Paso.

1.2 Scope

This document provides guidance on the architecture, formatting, commenting, haming, and programming
style of C# source code and is applicable to component libraries, web sites, web services, and client —
server applications.

2 Technologies and Architecture

2.1 Programming Languages and project specifications

As part of the TTUHSC El Paso programming standarization the following languages and technologies
are defined as primary components to work with when developing new projects:

A) Visual Studio Professional 2017 Framework 4.7.1

B) Web applications: ASP.NET with MVCS5.

C) Front End: ASP.Net, CSS, Javascript, and Bootstrap templates to build responsive web pages
(automatic adjustment when using wide screens, tablets or smart phones).

D) Back End: C# (only in very specific cases we will use VB.Net).

E) API: WCF (Windows Communication Fundation).

F) DBMS: MS SQL Server 2016 (Database, SP, UDF, Database Mail, Jobs) and Oracle 12c for very
specific cases.

G) Authentication: CAS authentication method and RoleProvider for granular permissions, the only
exepction is to use eRaider authentication when the application was built in ASP classic.

H) Repository: our current version controller is Git, for further information review the document
Source Control Policies Installation and User Guide.pdf.

I) When creating a new project the naming of the solution, database, and repository should match.

2.2 Applications Architecture

Version 1.2 5 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

. TEXAS TECH UNIVERSITY TTUHSC

T ’ |
J‘ E{l%k?(;l SCIENCES CENTER. Coding Standards

The applications shall have at least the following 3 layers in the solution:

A) Presentation Layer (Views, Models and Controllers).
B) Business Logic Layer (Functions or methods with business logic)
C) Data Access Layer (Data entities, DB connections, Entity framework)

The applications might have more layers depending on the application needs, and the layers supporting
either front-end or back-end will be Class Libraries.

Solution Explorer * 1 X
@ o-2d #F
Search Solution Explorer (Ctrl+;) ,0‘-

fad Solution 'EMRsupportSystern’ (4 projects)
4 BusinessLogicLib
I J Properties
P =B References
@ BusinessLogic
B WCFservicelogic
4 DatafccessLib
b J Properties
P =B References
b @ Entities
b Logic
b @ Translators
F EMRsupportContractlib
b S Properties
P =B References
b g WCFserviceContracts
4 EMRsupportSystem
b S Properties
P =B References
i App Data
B App_Start
i Content
B Controllers
B Models
W Scripts
i Views
& Global.asax
v packages.config
P ¢ Web.config

Vv vV v v v v

Solution Explorer | Team Explorer | Class View

Fig 1.0 Solution Architecture example.

Version 1.2 6 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

[T TEXAS TECH UNIVERSITY TTUHSC

‘ I E{l%k’gg SCIENCES CENTER. Eocing Siacacts

3 Accesibility Guidelines

In order to comply with WCAG 2.0, the scope for all new applications created and developed at TTUHSC
must adhere to the Accessibility Guidelines mentioned in the Accessibility Guidelines v1.1 document.

There are 12 basic principles that every application should follow and pursue in order to broaden its use
scope to specific demographics with special needs.

3.1 Accessibility Guidelines

Under the principles are 12 guidelines that provide basic goals that authors/developers should work toward
in order to make content more accessible to users with different disabilities.

Accessibility Guidelines V1.1 TTUHSC El Paso. Adrian Cazares et al. 2020.

https://sharepointl16.elpaso.ttuhsc.edu/support/IT/IMS/trainings/SOP%20Guides%20Manuals/Accessibi
lityGuidelines.docx

4 Programming

4.1 Namespaces

Namespaces represent the logical packaging of component layers and subsystems. The declaration
template for namespaces will be: Company.Product.Library.SubsystemName (or subfolder).

Examples:
TTUHSC.CIS.DataAccess.Translators
TTUHSC.RMS.BusinessLogic

Guidelines:

o Use plural namespace names if it is semantically appropriate. For example, use
System.Collections rather than System.Collection. Exceptions to this rule are brand names and
abbreviations. For example, use System.lO rather than System.|Os.

o Use Pascal casing when naming namespaces.

Version 1.2 7 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

https://sharepoint16.elpaso.ttuhsc.edu/support/IT/IMS/trainings/SOP%20Guides%20Manuals/AccessibilityGuidelines.docx
https://sharepoint16.elpaso.ttuhsc.edu/support/IT/IMS/trainings/SOP%20Guides%20Manuals/AccessibilityGuidelines.docx

[T TEXAS TECH UNIVERSITY TTUHSC

‘ I E{l%k’gg SCIENCES CENTER. Eocing Siacacts

4.2 Classes & Structures

Classes and structures represent the ‘Nouns’ of a system. As such, they should be declared using the
following template: Noun + Qualifier(s). Classes and structures should declared with qualifiers that reflect
their derivation from a base class whenever possible.

Examples:
CustomerForm: Form

CustomerCollection: CollectionBase

Guidelines:
o Use Pascal casing when naming classes and structures.

o Classes and structures should be broken up distinct #regions as described in the class layout
guidelines.

o All public classes and their methods should be documented using the Intellisense triple slash ‘///’
comments built into Visual Studio.Net. Use this comment style to document the purpose of the class
and its methods.

o Default values for fields should be assigned on the line where the field is declared. These values are
assigned at runtime just before the constructor is called. This keeps code for default values in one
place, especially when a class contains multiple constructors.

4.3 Interfaces

Interfaces express behavior contracts that derived classes must implement. Interface names should use
Nouns, Noun Phrases, or Adjectives that clearly express the behavior that they declare.

Examples:
IComponent
IFormattable

ITaxableProduct

Guidelines:
o Prefix interface names with the letter ‘I'.

o Use Pascal casing when naming interfaces.

Version 1.2 8 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

: I E{l%k?g SCIENCES CENTER. E ok Sthcarts

4.4 Constants

Constants and static read-only variables should be declared using the following template: Adjective(s) +
Noun + Qualifier(s)
Example:

public const int DefaultValue = 25;
public static readonly string DefaultDatabaseName = “Membership”;

Guidelines:
o Use Pascal casing when naming constants and static read only variables.

o Prefer the use of static readonly over const for public constants whenever possible. Constants declared
using const are substituted into the code accessing them at compile time. Using static readonly
variables ensures that constant values are accessed at runtime. This is safer and less prone to
breakage, especially when accessing a constant value from a different assembly.

4.5 Enumerations
Enumerations should be declared using the following template: Adjective(s) + Noun + Qualifier(s)

Example:

/Il <summary>
/Il Enumerates the ways a customer may purchase goods.
/Il <Isummary>

[Flags]

public enum PurchaseMethod

{
All =-~0,
None = 0,
Cash =1,
Check = 2,
CreditCard = 4,
DebitCard = 8,
Voucher =16,

}

Guidelines:

o Use Pascal casing when naming enumerations.

o Use the [Flags] attribute only to indicate that the enumeration can be treated as a bit field; that is, a set
of flags.

Version 1.2 9 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

=~ TEXAS TECH UNIVERSITY TTUHSC

: I E{l%k'gg SCIENCES CENTER. E ok Sthcarts

4.6 Variables, Fields & Parameters

Variables, fields, and parameters should be declared using the following template: Adjective(s) + Noun +
Qualifier(s)

Examples:

int lowestCommonDenominator = 10;
float firstRedBallPrice = 26.0f;

Guidelines:
o Use Camel casing when naming variables, fields, and parameters.
o Define variables as close as possible to the first line of code where they are used.

o Assign initial values whenever possible. The .NET runtime defaults all unassigned variables to 0 or null
automatically, but assigning them proper values will alleviate unnecessary checks for proper
assignment elsewhere in code.

o Avoid meaningless names like i, j, k, and temp. Take the time to describe what the object really is (e.qg.
use index instead of i; use swaplnt instead of templint).

o Use a positive connotation for boolean variable names (e.g. isOpen as opposed to notOpen).

4.7 Properties
Properties should be declared using the following template: Adjective(s) + Noun + Qualifier(s)
Examples:
public TotalPrice
get
return this.totalPrice;
set

/I Set value and fire changed event if new value is different
if(lobject.Equals(value, this.totalPrice)

this.totalPrice = value;
this.OnTotalPriceChanged();

}
}
}

Guidelines:

o Use the common prefixes for inspection properties (properties that return query information about an
object).

o When there is a property setter that sets another property:

Version 1.2 10 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

E{%}{ES ISR) Coding Standards

e If the code in the other property sets a private member field in the same class, the field should be
set directly, without calling the property setter for that field.

o If a property setter sets a private field that would normally be set via another property setter, the
originating setter is responsible for firing any events the other setter would normally fire (e.g.
Changed events).

e If a value that needs to be set that does NOT correspond to a private field, then an appropriate
property setter or method should be called to set the value.

4.8 Methods

Methods should be named using the following format: Verb + Adjective(s) + Noun + Qualifier(s)

Example:

private Ball FindRedCansByPrice(float price,ref int canListToPopulate, out int numberOfCansFound)

Guidelines:

o

Parameters should be grouped by their mutability (from least to most mutable) as shown in the example
above.

If at all possible, avoid exiting methods from their middles. A well written method should only exit from
one point: at its end.

Avoid large methods. As a method’s body approaches 20 to 30 lines of code, look for blocks that could
be split into their own methods and possibly shared by other methods.

If you find yourself using the same block of code more than once, it's a good candidate for a separate
method.

Group like methods within a class together into a region and order them by frequency of use (i.e. more
frequently called methods should be near the top of their regions.

4.9 Event Handlers

Event handlers should be declared using the following format: ObjectName_EventName

Example:

private HelpButton_Click(object sender, EventArgs e)

4.10 Error Handling

Use exceptions only for exceptional cases, not for routine program flow. Exceptions have significant

Version 1.2 11 6/10/2021

Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

Eﬁg}g ISR) Coding Standards

performance overhead.

Guidelines:
o Pass a descriptive string into the constructor when throwing an exception.
o Use grammatically correct error messages, including ending punctuation. Each sentence in the
description string of an exception should end in a period.
o If a property or method throws an exception in some cases, document this in the comments for the
method. Include which exception is thrown and what causes it to be thrown.
o Example: Comment for Order.TotalCost property might read "Gets or sets the total cost of an
Order. If the TotalCost property is set when the cost should be calculated, an
InvalidOperationException is thrown."
o Use the following exceptions if appropriate:
e ArgumentException (and ArgumentNull, ArgumentOutOfRange, IndexOutOfRange): Used when
checking for valid input parameters to method.
¢ InvalidOperationException: Used when a method call is invalid for the current state of an object.
Example: TotalCost cannot be set if the cost should be calculated. If the property is set and it
fails this rule, an InvalidOperationException is thrown.
¢ NotSupportedException: Used when a method call is invalid for the class.
Example: Quantity, a virtual read/write property, is overridden by a derived class. In the derived
class, the property is read-only. If the property is set, a NotSupportedException is thrown.
¢ NotimplementedException: Used when a method is not implemented for the current class.
Example: An interface method is stubbed in and not yet implemented. This method should
throw a NotimplementedException.
o Derive your own exception classes for a programmatic scenarios. All new derived exceptions should
be based upon the core Exception class.
Example: DeletedByAnotherUserException : Exception. Thrown to indicate a record being modified
has been deleted by another user.
o Rethrow caught exceptions correctly.
The following example throws an exception caught and rethrown incorrectly:
catch(Exception ex)
LogManager.Publish(ex);
Version 1.2 12 6/10/2021

Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

i

gl%k?; SCIENCES CENTER. Coding Standards

throw ex; // INCORRECT —we lose the call stack of the exception
}

We log all unhandled exceptions in our applications, but may sometimes throw them again to let
the higher level systems determine how to proceed. The problem comes in with the throw — it works
much better to do this:

catch(Exception ex)

{
LogManager.Publish(ex);
throw; // CORRECT - rethrows the exception we just caught

}

Notice the absence of an argument to the throw statement in the second variation.

The difference between these two variations is subtle but important. With the first example, the
higher level caller isn’t going to get all the information about the original error. The call stack in the
exception is replaced with a new call stack that originates at the “throw ex” statement — which is
not what we want to record. The second example is the only one that actually re-throws the original
exception, preserving the stack trace where the original error occurred.

Version 1.2 13 6/10/2021

Texas Tech University Health Sciences Center. All rights reserved.

=~ TEXAS TECH UNIVERSITY TTUHSC

: I E{l%k'gg SCIENCES CENTER. E ok Sthcarts

5 Formatting

5.1 Class Layout

Classes should be organized into regions within an application using a layout determined by the best
practices. These may be based on accessibility, type, or functionality.

Example:

/I Class layout based on accessibility
class Purchasing

{

#region Main
#region Public
#region Internal
#region Protected
#region Private
#region Extern

#region Designer Generated Code

}

Guidelines:
o Use the same layout consistently in all classes in an application.
o Omit regions if their associated class elements are not needed.

o The Designer Generated Code region created by Visual Studio’s Visual Designer should never be
modified by hand. It should contain only code generated by the designer.

5.2 Indicating Scope

Indicate scope when accessing all static and non-static class members. This provides a crystal clear
indication of the intended use of the member. VisualStudio.NET intellisense is automatically invoked when
using this practice, providing a list of all available class members. This helps prevent unnecessary typing
and reduces the risk of typographic errors.

Example:

string connectionString = DataAccess.DefaultConnectionString;
float amount = this.CurrentAmount;
this.discountedAmount = this.CalculateDiscountedAmount(amount, this.PurchaseMethod);

Version 1.2 14 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

‘ T E{l%k?(; SCIENCES CENTER. Coding Standards

Guidelines:
o Include the this keyword before all member fields, properties and methods.

o Include the name of the class before all static fields, constants, fields, and methods.

5.3 Indentation & Braces

Statements should be indented (using tabs) into blocks that show relative scope of execution. A consistent
tab size should be used for all indentation in an application. Braces, when necessary, should be placed
directly below and aligned with the statement that begins a new scope of execution. Visual Studio.NET
includes a keyboard short-cut that will automatically apply this format to a selected block of code.

Example:
float CalculateDiscountedAmount(float amount, PurchaseMethod purchaseMethod)

/I Calculate the discount based on the purchase method
float discount = 0.0f;

switch(purchaseMethod)

{

case PurchaseMethod.Cash:
/I Calculate the cash discount
discount = this.CalculateCashDiscount(amount);
Trace.Writeline(“Cash discount of {0} applied.”, discount);
break;

case PurchaseMethod.CreditCard:
/I Calculate the credit card discount
discount = this.CalculateCreditCardDiscount(amount);
Trace.WriteLine(“Credit card discount of {0} applied.”, discount);
break;

default:
/I No discount applied for other purchase methods
Trace.WriteLine(“No discount applied.”);
break;

}

/I Compute the discounted amount, making sure not to give money away
float discountedAmount = amount — discount;
if(discountedAmount < 0.0f)
discountedAmount = 0.0f;
}
LogManager.Publish(discountedAmount.ToString());

/I Return the discounted amount
return discountedAmount;

Version 1.2 15 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

[T TEXAS TECH UNIVERSITY TTUHSC

‘ I E{l%k’gg SCIENCES CENTER. Eocing Siacacts

5.4 White space

Liberal use of white space is highly encouraged. This provides enhanced readability and is extremely helpful
during debugging and code reviews. The indentation example above shows an example of the appropriate
level of white space.

Guidelines:

o Blank lines should be used to separate logical blocks of code in much the way a writer separates prose
using headings and paragraphs. Note the clean separation between logical sections in the previous
code example via the leading comments and the blank lines immediately following.

o Single spaces should be used to separate logical elements within individual statements. This can be
seen clearly in the CalculateDiscountedAmount and swi tch statements in the preceding example. Note
the spaces immediately after opening ‘(‘s and before closing ‘)’s.

5.5 Long lines of code

Comments and statements that extend beyond 80 columns in a single line can be broken up and indented
for readability. Care should be taken to ensure readability and proper representation of the scope of the
information in the broken lines. When passing large numbers of parameters, it is acceptable to group related
parameters on the same line.

Example:
string Win32FunctionWrapper(int argl, string arg2, bool arg3)

/I Perform a PInvoke call to a win32 function,
/I providing default values for obscure parameters,
/I to hide the complexity from the caller
if(Win32.Internal SystemCall(

null,

argl, arg2,

Win32.GlobalExceptionHandler,

0, arg3,

null)

return “Win32 system call succeeded.”;
else

return “Win32 system call failed.”;

}

Guidelines:

o When breaking parameter lists into multiple lines, indent each additional line one tab further than the
starting line that is being continued.

o Group similar parameters on the same line when appropriate.

o When breaking comments into multiple lines, match the indentation level of the code that is being

Version 1.2 16 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

AL E{l%kgg SCIENCES SENTERS Coding Standards

commented upon.

o Consider embedding large string constants in resources and retrieving them dynamically using the .NET
ResourceManager class.

6 Commenting

6.1 Intellisense Comments

Use triple slash ‘///' comments for documenting the public interface of each class. This will allow Visual
Studio.Net to pick up the method’s information for Intellisense. These comments are required before each
public, internal, and protected class member and optional for private members.

6.2 End-Of-Line Comments

Use End-Of-Line comments only with variable and member field declarations. Use them to document the
purpose of the variable being declared.
Example:

private string name = string.Empty; // Name of control (defaults to blank)

6.3 Single Line Comments

Use single line comments above each block of code relating to a particular task within a method that
performs a significant operation or when a significant condition is reached. Comments should always begin
with two slashes, followed by a space.

Example:

/I Compute total price including all taxes

float stateSalesTax = this.CalculateStateSalesTax(amount, Customer.State);
float citySalesTax = this.CalculateCitySalesTax(amount, Customer.City);

float localSalesTax = this.CalculateLocalSalesTax(amount, Customer.Zipcode);
float totalPrice = amount + stateSalesTax + citySalesTax + localSalesTax;
Console.WriteLine(“Total Price: {0}", totalPrice);

6.4 // TODO: Comments

Use the // TODO: comment to mark a section of code that needs further work before release. Source code
should be searched for these comments before each release build.

6.5 C-Style Comments

Use c-style /*..*/ comments only for temporarily blocking out large sections of code during development

Version 1.2 17 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

(I e e it Coding Standards

and debugging. Code should not be checked in with these sections commented out. If the code is no longer
necessary, delete it. Leverage your source control tools to view changes and deletions from previous
versions of the code. If code must be checked in with large sections commented out, include a // ToDO:
comment above the block commented out describing why it was checked in that way.

7 Capitalization

7.1 Capitalization

Follow the standard set by the .NET framework team by using only three capitalization styles: Pascal,
Camel, and Upper casing.

Examples:
Identifier Type Capitalization Style Example(s)
Abbreviations Upper ID, REF
Namespaces Pascal AppDomain, System.lO
Classes & Structs Pascal AppView
Constants & Enums Pascal TextStyles
Interfaces Pascal IEditableObject
Enum values Pascal TextStyles.BoldText
Property Pascal BackColor
Variables, and Attributes Pascal (public) WindowSize
Camel (private, protected, local) windowWidth, windowHeight
Methods Pascal (public, private, protected) ToString()
Camel (parameters) SetFilter(string filterValue)
Local Variables Camel recordCount
Guidelines:

o In Pascal casing, the first letter of an identifier is capitalized as well as the first letter of each
concatenated word. This style is used for all public identifiers within a class library, including
namespaces, classes and structures, properties, and methods.

o In Camel casing, the first letter of an identifier is lowercase but the first letter of each concatenated
word is capitalized. This style is used for private and protected identifiers within the class library,
parameters passed to methods, and local variables within a method.

o Upper casing is used only for abbreviated identifiers and acronyms of four letters or less.

Version 1.2 18 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

J E{l!f.gk'g}g SCIENCES CENTER. Coding Standards

8 C# Golden Rules

The following guidelines are applicable to all aspects of C# development:

o Make code as simple and readable as possible. Assume that someone else will be reading your code.
o Prefer small cohesive classes and methods to large monolithic ones.

o Use a separate file for each class, struct, interface, enumeration, and delegate with the exception of
those nested within another class.

o Write the comments first. When writing a new method, write the comments for each step the method will
perform before coding a single statement. These comments will become the headings for each block of
code that gets implemented.

o Use liberal, meaningful comments within each class, method, and block of code to document the
purpose of the code.

o Mark incomplete code with // TODO: comments. When working with many classes at once, it can be
very easy to lose a train of thought.

o Never hard code “magic” values into code (strings or numbers). Instead, define constants, static read-
only variables, and enumerations or read the values from configuration or resource files.

o Prefer while and foreach over other available looping constructs when applicable. They are logically
simpler and easier to code and debug.

o Use the StringBuilder class and it's Append(), AppendFormat(), and ToString() methods instead of the
string concatenation operator (+=) for much more efficient use of memory.

o Be sure Dispose() gets called on IDisposable objects that you create locally within a method. This is
most commonly done in the finally clause of a try block. It's done automatically when a using statement
is used.

o Never present debug information to yourself or the end user via the Ul (e.g. MessageBox). Use tracing
and logging facilities to output debug information.

o Gaps and exceptions to these guidelines should be discussed and resolved with your application
architect.

o Follow the style of existing code. Strive to maintain consistency within the code base of an application.
If further guidance is needed, look to these guidelines and the .NET framework for clarification and
examples.

Version 1.2 19 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

[T TEXAS TECH UNIVERSITY TTUHSC

‘ I E{l%k’gg SCIENCES CENTER. Eocing Siacacts

9 Database Standards

9.1 General Rules for all database objects
o Tryto limit the name to 30 characters (shorter is better).
o Avoid using underscores even if the system allows it, only special cases are allowed.
o Tryto avoid numbers — and limit the use of underscores to meet standards for constraints.
o Limit the use of abbreviations (can lead to misinterpretation of names).
o Limit the use of acronyms (some acronyms have more than one meaning e.g. "ASP").
o Make the name readable.

o Avoid using spaces in names even if the system allows it.

o Ensure the name is unique and does not exist as a reserved keyword.

9.2 Tables
o Names should use PascalCase (AuditTransaction).

o Use singular or a collective name or, less ideally, a plural form. For example (in order of preference)
staff and employees.

o Do not prefix with tbl or any other such descriptive prefix or Hungarian notation.

o Never give a table the same name as one of its columns and vice versa.

9.3 Columns
o Always use the singular name.
o Where possible avoid simply using id as the primary identifier for the table.
o Do not add a column with the same name as its table and vice versa.
o All column names should use PascalCase to distinguish them from SQL keywords (camelCase).
o Don’t use prefixes.

o Field names should contain only letters and numbers. No special characters, underscores or spaces
should be used.

Version 1.2 20 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

E{%}{ES ISR) Coding Standards

9.4 Views

o While it is pointless to prefix tables, it can be helpful for views. Prefix your views with "vw", is a helpful
reminder that you're dealing with a view, and not a table.

o Give a meaningful name to the view. For example, joining the "Customer" and "StateAndProvince"
table to create a view of Customers and their respective geographical data should be given a name
like "vwCustomerStateAndProvince".

o Names should use PascalCase after the prefix.

9.5 Stored Procedures

o The name must contain and start with a verb (Get, Create, Save, Insert, Update, Delete, Validate,
etc.)

o Do not prefix with sp_ or any other such descriptive prefix or Hungarian notation.

o Names should use camelCase (getCustomerinformation).

o SQL reserved words should be written in UPPER Case (SELECT, FROM, WHERE, etc)

9.6 Functions

o Prefix the name with “fn” as a helpful reminder that you're dealing with a function, and not a stored
procedure.

o Names should use camelCase (fnGetOpenDate).

o Functions should be named as a verb, because they will always return a value.

o SQL reserved words should be written in UPPER Case (SELECT, FROM, WHERE, etc)

9.7 Variables

o Variable names should be meaningful and natural.

o Variable names should describe its purpose and not exceed 30 characters in length.

o All variables must begin with the “@” symbol. Do NOT user “@@” to prefix a variable as this signifies
a SQL Server system global variable and will affect performance.

o All variables should be written in camelCase, e.g. “@firstName” or “@city” or “@siteld”.

o Variable names should contain only letters and numbers. No special characters or spaces should be

Version 1.2 21 6/10/2021

Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

, » pbees :
] . E{%“l\,’é‘g SCIENCES CENTER. E ok Sthcarts

used.

9.8 DB Coding Conventions

o SQL statements should be arranged in an easy to read manner, refer to the following example:

SELECT
dui.DealUnitInvoicelD,
dui.UnitInventoryID,
ui.UnitiID,
ui.StockNumber [Stock Number],
ut.UnitType AS [Unit Type],
COALESCE(mk.Description, '') Make,
COALESCE(ml.Description, "') Model,
DATEPART (YEAR,u.ProductionYear) [Year],
ut.UnitTypelD,
mt.Description AS MeterType,
ui.MeterReading,
ui.ECMReading,
'$' + LTRIM(CONVERT(nvarchar(18),CONVERT(decimal(18, 2),dui.Price))) Price,
'$" + LTRIM(CONVERT(nvarchar(18),CONVERT(decimal(18, 2),dui.Cost))) Cost,
dui.IsTradeln,
COALESCE(u.Vin,'"') Vin,
COALESCE(u.SerialNumber,'") SerialNumber,
ui.AvailabilityStatusID,
ui.SellingStatusID,
ui.IsNew,
ui.UnitPurchaseOrderlID,
ui.BaseCost,
dui.DealPacketInvoiceID
FROM dbo.DealUnitInvoice dui
INNER JOIN dbo.UnitInventory ui
ON dui.UnitInventoryID = ui.UnitInventoryID
INNER JOIN dbo.Unit u
ON ui.UnitID = u.UnitID
LEFT JOIN dbo.MeterType mt
ON u.MeterTypeID = mt.MeterTypelD
LEFT JOIN dbo.UnitType ut
ON ui.UnitTypeID = ut.UnitTypeID
AND ut.InActive = 0
LEFT JOIN dbo.Make mk
ON u.MakeID = mk.MakeID
AND mk.Inactive = @
LEFT JOIN dbo.Model ml
ON u.ModelID = ml.ModelID
AND ml.InActive = @
WHERE ut.ui.IsNew =1

Note how the tables are aliased and joins are clearly laid out in an organized manner.

Version 1.2 22 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

. TEXAS TECH UNIVERSITY

T HEALTH SCIENCES CENTER .
‘L EL PASO

TTUHSC
Coding Standards

o When developing a stored procedure consider the following example to use TRY — CATCH and BEGIN

— END blocks as well as the indentation:

CREATE PROCEDURE DoStuff
@varl int

AS

SET NOCOUNT ON

BEGIN TRY
BEGIN TRAN
DELETE FROM MyTable
WHERE Coll = @varl
INSERT INTO MyOtherTable(Coll)
SELECT @varl
COMMIT TRANSACTION
END TRY
GO

BEGIN CATCH
SELECT
ERROR_NUMBER() as ErrorNumber,
ERROR_MESSAGE() as ErrorMessage
-- Test XACT_STATE for 1 or -1.
-- XACT_STATE = © means there is no transaction and
-- a commit or rollback operation would generate an error.

-- Test whether the transaction is uncommittable.
IF (XACT_STATE()) = -1

BEGIN
PRINT
N'The transaction is in an uncommittable state. ' +
'Rolling back transaction.’
ROLLBACK TRAN
END

-- Test whether the transaction is active and valid.
IF (XACT_STATE()) =1

BEGIN
PRINT
N'The transaction is committable. ' +
'Committing transaction.'
COMMIT TRAN
END
END CATCH
Version 1.2 23 6/10/2021

Texas Tech University Health Sciences Center. All rights reserved.

. TEXAS TECH UNIVERSITY

m

HEALTH SCIENCES CENTER .
EL PASO

TTUHSC
Coding Standards

Code Commenting: Important code blocks within stored procedures and user defined functions should
be commented. Brief functionality descriptions should be included where important or complicated

processing is taking place.

Code Headers: Stored procedures, triggers and user-defined functions should have a code header.
The header can be created using the comment syntax above. This header should give a brief
description of the functionality of the procedure as well as any special execution instructions. Also
contained in this header there should be a brief definition of any parameters used. Refer to the example
below. You may also include an execution example of the function or procedure in the header as well.

CREATE PROCEDURE [dbo].[validateConcurrency]

@TableName varchar(255),

@ID int,

@LastUpdate datetime,

@IsValid bit OUTPUT
AS
/***
This procedure validates the concurrency of a record update by taking
the LastUpdate date passed in and checking it against the current
LastUpdate date of the record. If they do NOT match the record is not
updated because someone has updated the record out from under
the user.

@TableName = Table to be validated.

@ID = Record ID of the current record to be validated.
@LastUpdate = The Last Update Date passed by app to compare with
current date value for the record.

@IsValid = Returns the following back to the calling app.

1 = Record is valid. No concurrancy issues.

© = Record is NOT concurrent.
***/

Version 1.2 24
Texas Tech University Health Sciences Center. All rights reserved.

6/10/2021

= TEXAS TECH UNIVERSITY TTUHSC

J E{l!f.gk'g}g SCIENCES CENTER. Coding Standards

10 Secure Website

10.1 Authentication and Authentication

What is Authentication?

Authentication is a process to ensure and confirms a user’s identity and whether the user is registered or
not to access particular data or web pages. In other words, we can say that it is a process to validate
someone against some data source.

What is Authorization?

Authorization is a security mechanism which is used to determine whether the user has access to a
particular resource or not. The main point that you need to remember is, authentication happens first, then
only authorization.

10.1.1 Install DotNetCasClient using NuGet

§ DotNetCasClient N
g DotNetCasCi) v C of k, c Catherine D. ir Allen, Jasol
@ The Apereo . . . _ s e _—

Version: 132
~) Options

Description

.NET client for the Apereo Central Authentication

Version:

Author(s):

Library.
Script Library that simplifies document traversing, event handling, animating, and Ajax interacti

Y lair Allen,Jaso
naris

v270.0 License:
cking the browser. Date published: Tuesday, April 16, 2019 (
ctivated Project URL:
Report Abuse:
Tags: Ap Authentication, Authn, ASP.NET, MVC

ird-party packages. Dependenci
No dependencies

10.1.2 Forms Authentication

Add the following line to implement CAS Form Authentication

<system.web>
<authentication mode="Forms">
<forms name="TP_Cookie_" loginUrl="https://cas5.elpaso.ttuhsc.edu/cas/login" timeout="90"
defaultUrl="~/Default.aspx" cookieless="UseCookies" path="/" enableCrossAppRedirects="true" />
</authentication>
<system.web>

<configuration>

Version 1.2 25 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC
| HEALTH SCIENCES CENTER.

EL PASO Coding Standards

<casClientConfig casServerLoginUrl="https://cas5.elpaso.ttuhsc.edu/cas/login"”
casServerUrlPrefix="https://cas5.elpaso.ttuhsc.edu/cas/" serverName="https://localhost:44305/"
notAuthorizedUrl="~/shared/AccessDenied.cshtml" cookiesRequiredUrl="~/CookiesRequired.aspx"
redirectAfterValidation="true"
renew="false" singleSignOut="true" ticketValidatorName="Cas20"
serviceTicketManager="CacheServiceTicketManager" />

</configuration>

10.1.3 Using Authorize and AllowAnonymous Attributes

The Authorize Attribute is the built-in attribute provided by MVC which is basically used to authenticate a
user. The action methods which any anonymous user won’t have to is decorated with Authorize Attribute.

The AllowAnonymous attribute helps secure website or Controller while providing convenient means of
allowing anonymous user access to certain controller actions just like login and register actions.

o Create an Authorization Controller

[Authorize]
public class AuthorizationController : Controller

{
private readonly FormsAuthenticationTicket _ticket =
DotNetCasClient.CasAuthentication.GetFormsAuthenticationTicket();

public ActionResult WelcomeScreen()

return View();

}

[AllowAnonymous]
public ActionResult Login()

{
try

DisableCacheHistory();

if (_ticket == null || 'User.ldentity.IsAuthenticated)
{

return WelcomeScreen();

}

return RedirectToAction("Home", "Home");
catch (Exception)

RemoveSession(false);
return WelcomeScreen();
}
}

public ActionResult LogOut()
{

Version 1.2 26 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

| J E{l%kgg SRIENGES CENEERS Coding Standards

return WelcomeScreen();

}

private void DisableCacheHistory()

{
Response.Cache.SetCacheability(HttpCacheability.NoCache);

Response.Cache.SetAllowResponselnBrowserHistory(false);
Response.CacheControl = "no-cache";
Response.Cache.SetNoServerCaching();

}

private void RemoveSession(bool signOutCas)

{
DisableCacheHistory();

Session.RemoveAll();
Session.Abandon();

if (signOutCas)

{

DotNetCasClient.CasAuthentication.SingleSignOut();
}
}
}

10.1.4 Role base authentication

To add a role base authentication the steps are:

o Import NuGet package AddTtuhscRoleProvider

(F9) AddTtuhscRoleProvider

@ AddTtuhscRoleProvider
99 Conig -
) ninstall

nterpreters, compilers, and

grant any licenses to, third-party packages.

Version 1.2 27 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC
| HEALTH SCIENCES CENTER.

EL PASO Coding Standards

o Add the following lines on the Web.config file

</system.web>
<roleManager enabled="true" defaultProvider="RoleProvider">
<providers>
<clear />
<add name="RoleProvider" type="TTUHSC.Web.Security.RoleProvider"
connectionStringName="RoleProviderConnectionString" applicationName="ApplicationName" />
</providers>
</roleManager>
</system.web>

o Using the EraiderAuthorize Attribute

[HitpGet]

[Authorize]

[EraiderAuthorize(Roles = "Admin")]
public ActionResult HomeView()

{
try
{
catch (Exception ex)
{
return View(model);
}

10.2 Cross-Site Request Forgery (CSRF)

An attacker acts as a trusted source and sends some forged data to a site. The site processes the forged
data because it believes it is coming from a trusted source.

We can use the HTML tag helper asp-antiforgery in an HTML attribute and set its value as true. By default,
this value will be false. If we set this value as true, it will generate an anti-forgery token. Then, we need to
add the [ValidateAntiForgeryToken] attribute to the form post action method to check whether a valid
token is generated.

Example:
Setting the asp-antiforgery tag helper to true.

<form class="col-12" id="form" asp-antiforgery="true">
<div class="text-center">
<h1>Business</h1>
<div class="separator"></div>
</div>
</form>

Version 1.2 28 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

‘ T E{l%k?(; SCIENCES CENTER. Coding Standards

Adding [ValidateAntiforgeryToken] Attribute to the [HttpPost] Method

[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult View(model model)

{
try

{

}

catch (Exception ex)

{

}

return View(model);
}

The anti-forgery token can also be added using the following razor line

<form class="col-12" id="form">
@Html.AntiForgeryToken()
<div class="text-center">
<h1>Business</h1>
<div class="separator"></div>
</div>
</form>

When using JavaScript or jQuery to post using Ajax we can get the Anti-forgery token and then proceed to
add it to the data attribute.

Example:
Adding the AntiForgeryToken to the data attribute

$.ajax({
url: call,
type: 'post’,
data: {$(inputfname="__RequestVerificationToken"]', $form).val()},
dataType: ‘json’,
contentType: ‘application/x-www-form-urlencoded; charset=utf-8',
success: function (data) {},
error: function (err) {}

N
Adding [ValidateAntiforgeryToken] Attribute to the [HttpPost] Method

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<JsonResult> GetGeoLocation(string address)
{
try
{

return Json(new { success = true });

catch (Exception exception)

Version 1.2 29 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

I ‘ E{l%k'gg SCIENCES CENTER. E ok Sthcarts

var innerException = exception.InnerException != null ? exception.InnerException.Message :
N/A™

return Json(new { success = false, text = $"Message:{exception.Message} InnerMessage:
{innerException}" });

10.3 Cross Site Scripting (XSS)

10.3.1 Regular Expression Attribute and object model

Use of regular expressions to validate the user’s form inputs. Deny malicious characters, symbols, or allow
only acceptable required characters in the input field before allowing the user to proceed further.

Examples:
Regular expression attribute

[RegularExpression(@""a-zA-Z"-\s]{1,40}$", ErrorMessage = "Characters are not allowed.")]
public object FirstName;

[RegularExpression(@"\[a-zA-Z"-\s]{1,40}$")]
public object LastName;

Regular expression object model

public static void Main()

{
string[] values = {"111-22-3333", "111-2-3333"};

string pattern = @"N\d{3}-\d{2}-\d{4}$";
foreach (string value in values)
if (Regex.IsMatch(value, pattern))
Console.WriteLine("{0} is a valid SSN.", value);

else
Console.WriteLine("{0}: Invalid”, value);
}

}

10.3.2 URL Encoding

We use plain text in URL query strings, which can be used to launch XSS attacks. So, we should encode
the query parameter input in the URL.

Version 1.2 30 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

[T TEXAS TECH UNIVERSITY TTUHSC

‘ I E{l%k’gg SCIENCES CENTER. Eocing Siacacts

Example:
NuGet built-in library

string encodedValue = System.Net.WebUTtility.UrlEncode("raw-string-text");
string decodedValue = System.Net.WebUTtility.UrIDecode(encodedValue);

10.3.3 SQL Injection

I's a dangerous attack where in unauthorized users inject malicious SQL code that then runs in your
database, allowing the attackers to access confidential information stored in it.

The SQL injection attack can be prevented in the following ways:
a) Validate inputs
Defending against SQL injection by validating inputs requires the following actions:

o Validate the user inputs on both the client side and server side.
o Do not allow special characters that are involved in SQL scripts.
o Use regular expressions and data annotations to validate inputs.

b) Use stored procedures

Using stored procedures will prevent SQL injection, but still validate the input parameters passed to the
stored procedures.

c) Use parameterized queries
Parameterized queries to prevent SQL injection.
Example:

SqlConnection sqlConnection = new SglConnection();
SglCommand sqlCommand = new SglCommand("SELECT * FROM Users WHERE id = @id", sglConnection);
SqlParameter sqglParameter = new SqlParameter();

sqlParameter.ParameterName = "@id";
sqlParameter.Value = id;
sqlCommand.Parameters.Add(sglParameter);

d) Use Entity Framework or any other ORM
ORM stands for object-relational mapper, which maps SQL objects to your application class object.

Using Entity framework properly, makes the application not prone to SQL injection attacks because
Entity Framework internally uses parameterized queries.

Version 1.2 31 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

(I e e it Coding Standards

e) Use least-privileged DB access

Limiting DB user permissions for tables that have confidential data. For example, we should restrict
the insert, update, and delete permissions for tables related to payments and transactions, and we
should also limit permissions for tables that store a user’s personal information.

If a user only works with Select queries, then we must give permission only to the Select statement,
and should not provide permissions for Insert, Update, and Delete statements.

f) Store encrypted data

Confidential information like email addresses and passwords as plain text in a database should be
stored in an encrypted format.

10.3.4 Secure Cookies

Securing cookies will help you avoid a hacker gets a secure cookie and hijack a session. There’s a series
of steps that we need to do in order to secure cookies.

The application must target at least .Net Framework version 4.7.2, the target framework can be verified
by checking on the project properties.

Example:
Project Settings
Application
ee N/A N/A
Build
Web Assembly name: Default namespace:
Package/Publish Web |[ELPTTPAdminTools | [ELPTTPAminTools
Package/Publish 50L Target framework: Output type:
Build Events MET Framework 4.7.2 ~ | | Class Library ~
= = Auto-generate binding redirects
Settings Startup object:
Reference Paths (Mot set) ~ Assembly Information...

Signing

Next step would be to add the following lines on the global.asax
Global.asax

protected void Application_Start()
{

}

MvcHandler.DisableMvcResponseHeader = true;

Version 1.2 32 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

. TEXAS TECH UNIVERSITY TTUHSC

T ’ |
J‘ E{l%k?(;l SCIENCES CENTER. Coding Standards

protected void Application_PreSendRequestHeaders()

{
if (HttpContext.Current != null)
{
HttpContext.Current.Response.Headers.Remove("Server");
}
}

And finally add the following lines on the web.config file.

<system.web>
<httpRuntime targetFramework="4.7.2" enableVersionHeader="false"/>
<compilation debug="true" targetFramework="4.7.2">
</compilation>
<sessionState cookieSameSite="Strict" />
<httpCookies httpOnlyCookies="true" requireSSL="true"/>
<authentication mode="Forms">
<forms name="appname" loginUrl="https://cas5.elpaso.ttuhsc.edu/cas/login" timeout="30"
defaultUrl="~/Authorization/Login" cookieless="UseCookies" path="/"
enableCrossAppRedirects="true" cookieSameSite="Strict" requireSSL="true"/>
</authentication>
</system.web>

Under system.webserver add the following lines and modify accordingly

<system.webServer>
<httpProtocol>
<customHeaders>
<add name="X-Frame-Options" value="SAMEORIGIN" />
<add name="X-Xss-Protection" value="1; mode=Dblock" />
<add name="X-Content-Type-Options" value="nosniff" />
<add name="Referrer-Policy" value="no-referrer" />
<add name="X-Permitted-Cross-Domain-Policies" value="none" />
<remove name="X-Powered-By" />
</customHeaders>
</httpProtocol>
</system.webServer>

As an additional step if you need to create a cookie on javascript the following code can be used,

function setCookie(name, value, expirationDays) {
var d = new Date();
d.setTime(d.getTime() + (expirationDays * 24 * 60 * 60 * 1000));
var expires = d.toUTCString();
document.cookie = name + "=" + value + ";expires=" + expires + ";path=/;secure;";

}

Version 1.2 33 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

https://cas5.elpaso.ttuhsc.edu/cas/login

= TEXAS TECH UNIVERSITY TTUHSC
| HEALTH SCIENCES CENTER.

EL PASO Coding Standards

function setCookieHttpOnly(name, value, expirationDays) {
var d = new Date();
d.setTime(d.getTime() + (expirationDays * 24 * 60 * 60 * 1000));
var expires = d.toUTCString();
document.cookie = name + "=" + value + ";expires=" + expires + ";path=/;secure;httpOnly;";

10.4 Custom Error Page for Error Handling

Sometimes you may not properly write error-handling code in your web application. This can lead us to
expose sensitive information such as database configuration info, table names, stored procedures, data
structures, and programming coding structure to users.

Example:

Adding the bellow lines to the web.config file will enable custom error handling:
<customErrors mode="0n" defaultRedirect="~/Error/GeneralError">
<error statusCode="403" redirect="~/Error/Forbidden" />
<error statusCode="404" redirect="~/Error/PageNotFound" />
<error statusCode="500" redirect="~/Error/InternalError" />
</customErrors>

Next step would be to create a controller to handle the views:

public class ErrorController : Controller

{
public ActionResult GeneralError()

return View();

}
public ActionResult Forbidden()

return View();

}
public ActionResult PageNotFound()

return View();

}
public ActionResult InternalError()

return View();

}

Version 1.2 34 6/10/2021
Texas Tech University Health Sciences Center. All rights reserved.

= TEXAS TECH UNIVERSITY TTUHSC

a E{%/@S SCR) Coding Standards

And finally create your own custom error html forms:

4 fm| Views
> Bl Admin
Bl Authorization
B Catalog
Ml Directory

&=l Error
(@] AccessDenied.cshtml
(@] Forbidden.cshtmil
(@] GeneralError.cshtml

[@1 InternalErrar.cshtml
021 PageMotFound.cshtml

35 6/10/2021

Version 1.2
Texas Tech University Health Sciences Center. All rights reserved.

